Friday 19 August 2011

caching documents

Satellites have been used for years to provide communication network links.  Historically, the use of satellites in the Internet can be divided into two generations. In the first generation, satellites were simply used to provide commodity links (e.g., T1) between countries. Internet Protocol (IP) routers were attached to the link endpoints to use the links as single-hop alternatives to multiple terrestrial hops. Two characteristics marked these first-generation systems: they had limited bandwidth, and they had large latencies that were due to the propagation delay to the high orbit position of a geosynchronous satellite.
In the second generation of systems now appearing, intelligence is added at the satellite link endpoints to overcome these characteristics.  This intelligence is used as the basis for a system for providing Internet access engineered using a collection or fleet of satellites, rather than operating single satellite channels in isolation. Examples of intelligent control of a fleet include monitoring which documents are delivered over the system to make decisions adaptively on how to schedule satellite time; dynamically creating multicast groups based on monitored data to conserve satellite bandwidth; caching documents at all satellite channel endpoints; and anticipating user demands to hide latency. 

generation systems

Satellites have been used for years to provide communication network links.  Historically, the use of satellites in the Internet can be divided into two generations. In the first generation, satellites were simply used to provide commodity links (e.g., T1) between countries. Internet Protocol (IP) routers were attached to the link endpoints to use the links as single-hop alternatives to multiple terrestrial hops. Two characteristics marked these first-generation systems: they had limited bandwidth, and they had large latencies that were due to the propagation delay to the high orbit position of a geosynchronous satellite.
In the second generation of systems now appearing, intelligence is added at the satellite link endpoints to overcome these characteristics.  This intelligence is used as the basis for a system for providing Internet access engineered using a collection or fleet of satellites, rather than operating single satellite channels in isolation. Examples of intelligent control of a fleet include monitoring which documents are delivered over the system to make decisions adaptively on how to schedule satellite time; dynamically creating multicast groups based on monitored data to conserve satellite bandwidth; caching documents at all satellite channel endpoints; and anticipating user demands to hide latency. 

Satellites have been used

Satellites have been used for years to provide communication network links.  Historically, the use of satellites in the Internet can be divided into two generations. In the first generation, satellites were simply used to provide commodity links (e.g., T1) between countries. Internet Protocol (IP) routers were attached to the link endpoints to use the links as single-hop alternatives to multiple terrestrial hops. Two characteristics marked these first-generation systems: they had limited bandwidth, and they had large latencies that were due to the propagation delay to the high orbit position of a geosynchronous satellite.
In the second generation of systems now appearing, intelligence is added at the satellite link endpoints to overcome these characteristics.  This intelligence is used as the basis for a system for providing Internet access engineered using a collection or fleet of satellites, rather than operating single satellite channels in isolation. Examples of intelligent control of a fleet include monitoring which documents are delivered over the system to make decisions adaptively on how to schedule satellite time; dynamically creating multicast groups based on monitored data to conserve satellite bandwidth; caching documents at all satellite channel endpoints; and anticipating user demands to hide latency. 

The need for a wireless electrical

The need for a wireless electrical power supply has spurred an interest in piezoelectric energy harvesting, or the extraction of electrical energy using a vibrating piezoelectric device. Examples of applications that would benefit from such a supply are a capacitively tuned vibration absorber ,a foot-powered radio” tag and a Pico Radio .A vibrating piezoelectric device differs from a typical electrical power source in that its internal impedance is capacitive rather than inductive in nature, and that it may be driven by mechanical vibrating amplitude and frequency. While there have been previous approaches to harvesting energy generated by a piezoelectric device there has not been an attempt to develop an adaptive circuit that maximizes power transfer from the piezoelectric device. The objective of the research described herein was to develop an approach that maximizes the power transferred from a vibrating piezoelectric transducer to an electromechanical battery. The paper initially presents a simple model of piezoelectric transducer. An ac-dc rectifier is added and the model is used to determine the point of optimal power flow for the piezoelectric element. The paper then introduces an adaptive approach to achieving the optimal power flow through the use of a switch-mode dc-dc converter. This approach is similar to the so-called maximum power point trackers used to maximize power from solar cells. Finally, the paper presents experimental results that validate the technique.